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We demonstrate the synthesis and magnetic properties of a quasi-two-dimensional frustrated quantum spin
system �CuCl�La�Nb1−xTax�2O7. We observed persistence of the spin-singlet state in �CuCl�LaNb2O7 up to
x�0.4, accompanied by a slight reduction in the spin gap with increasing x. In spite of unaltered cell param-
eters and a preserved CuCl plane, �CuCl�LaTa2O7 exhibits collinear antiferromagnetic �CAF� order with TN

�7 K as observed in �CuBr�LaNb2O7. In the intermediate region �0.4�x�1�, we observed CAF order with
a significantly reduced magnetic moment but with a nearly constant TN, suggesting that the CAF state coexists
with the spin-singlet state in agreement with recent �SR results.
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I. INTRODUCTION

Phenomena driven by quantum fluctuations in the vicinity
of a quantum critical point in two-dimensional �2D� systems
are one of the most important topics in modern physics. Mo-
tivated by the discovery of the 2D S=1 /2 spin correlation in
high-Tc superconducting cuprates, 2D quantum spin insula-
tors based on the square lattice and its analogs have been
searched for and extensively investigated. The examples in-
clude the J1-J2 lattice �where J1 and J2 denote the nearest
and next-nearest exchange constants� such as
Li2VO�Si, Ge�O4,1 the checkerboard lattice A2F2Fe2OQ2
�A=Sr and Ba; Q=S and Se�,2 the 1/5 depleted square lattice
CaV4O9,3 and the Shastry-Sutherland lattice SrCu2�BO3�2.4

Although those studies have revealed intriguing properties
such as a spin-disordered state and quantized magnetization
plateaus to name only a few,3–5 there are still many open
issues left unsolved and therefore further search for com-
pounds and systematic studies are required for global under-
standing of quantum fluctuations in 2D systems.

�CuCl�LaNb2O7 is an S=1 /2 square-lattice-based antifer-
romagnet, where the magnetic CuCl layers are sandwiched
by nonmagnetic LaNb2O7 blocks �Fig. 1�. This material has a
spin-singlet ground state and an excitation gap of �ZF
=2.3 meV. The triplet excitations are nearly Q independent
despite the apparent 2D crystal structure.6 Furthermore,
field-induced magnetic order occurs at a remarkably smaller
magnetic field of Hc1�10 T than that expected from �ZF.7–9

The loss of the tetragonal symmetry and thus the deviation
from the idealized J1-J2 model is suggested from the
nuclear magnetic resonance �NMR� studies.9 In contrast,
�CuBr�LaNb2O7 exhibits collinear antiferromagnetic �CAF�
order at a Néel temperature of TN=32 K with a propagation
vector q= �� , 0 , ��.10 Common to the two compounds,
there exist competing antiferromagnetic and ferromagnetic
interactions. Recent studies on a solid solution
�CuCl1−yBry�LaNb2O7 have revealed magnetic order by
5%-Br substitution.11,12 However, it is noteworthy that the
Br-for-Cl substitution with different ionic radii �1.82 Å for
Br− and 1.67 Å for Cl− �Ref. 13�� is subject to direct and

considerable disorder of the CuCl layer itself. Not only the
ratio of superexchange constants but also chemical disorder
might play a significant role in driving the phase transition.

In this paper we investigated the magnetic properties of
�CuCl�La�Nb1−xTax�2O7 by means of susceptibility, pulsed
high-field magnetization, and elastic/inelastic neutron
scattering measurements. A crucial advantage of the
Ta-for-Nb substitution over the Br-for-Cl substitution is that
the magnetic CuCl plane is preserved and that pentavalent
Nb and Ta ions have almost the same radius �0.64 Å�.13

The present study has been performed in parallel with
the muon spin relaxation ��SR� measurements of the
�CuCl1−yBry�LaNb2O7 and �CuCl�La�Nb1−xTax�2O7
systems12 by a research team involving some of the authors
of the present work.

II. EXPERIMENTAL PROCEDURE

The precursor phases RbLa�Nb1−xTax�2O7 �x=0, 0.2, 0.3,
0.4, 0.6, 0.8, and 1.0� were prepared via a conventional high
temperature route, using stoichiometric amounts of La2O3
�99.99% purity�, Nb2O5 �99.99%�, Ta2O5 �99.99%�, and
25% molar excess of Rb2CO3 �99.9%�. RbLa�Nb1−xTax�2O7
was then mixed with a twofold molar excess of ultradry
CuCl2 �99.999%� and pressed into pellets in an Ar-filled
glove box ��1 ppm O2 /H2O�. The ion-exchange reactions
expressed as

RbLa�Nb1−xTax�2O7 + CuCl2

→ �CuCl�La�Nb1−xTax�2O7 + RbCl �1�

were carried out in a sealed, evacuated ��10−3 Torr� Pyrex
tube at 320 °C for seven days.14 The final products were
washed with distilled water to eliminate RbCl and excess
CuCl2, and dried at 120 °C.

Room temperature x-ray diffraction �XRD� profiles of
�CuCl�LaNb2O7 and �CuCl�LaTa2O7 were indexed into a te-
tragonal cell with nearly the same lattice constants �a
=3.879 Å, c=11.754 Å for Nb, and a=3.879 Å, c
=11.748 Å for Ta�, consistent with those previously
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reported.14,15 No trace of impurity phases were found. The
XRD patterns of the 0�x�1 samples at room temperature
demonstrated successful synthesis of the solid solution hav-
ing nearly the same tetragonal cell parameters as those of
�CuCl�LaNb2O7 and �CuCl�LaTa2O7. The quality of the
XRD patterns is as good as that of the end members. Recent
NMR and transmission electron microscopy �TEM� experi-
ments showed that the space group of �CuCl�LaNb2O7 is not
P4 /mmm; the C4 symmetry is lost both at the Cu and Cl sites
and the original unit cell is doubled along the a and b axes.
Similar features might be also present in �CuCl�LaTa2O7 and
the solid solution.

To check the chemical homogeneity in the solid solution
system, energy-dispersive spectroscopy �EDS� was carried
out at ambient temperature using a JEM2010F system with
an operating voltage of 200 kV at the Institute for Solid State
Physics �ISSP� at the University of Tokyo. The specimen
was finely ground in methanol and then placed on a Cu mi-
crogrid mesh for TEM observations. As a typical example,
we show the TEM image of the x=0.8 sample in Fig. 1�b�
and the corresponding EDS spectrum in Figs. 1�c� and 1�d�,
which demonstrates a uniform distribution of the Nb and Ta
atoms.

Magnetic susceptibilities were measured using the Quan-
tum Design MPMS �Magnetic Property Measurement Sys-
tem� over the temperature range T=2–300 K in a magnetic
field H of 2 T. High-field magnetization measurements up to
57 T were conducted using a pulsed magnet installed at ISSP.
Elastic and inelastic neutron scattering experiments were
performed using the ISSP-PONTA triple-axis spectrometer
�5G�, installed at the JRR-3 reactor at the Japan Atomic En-
ergy Agency �JAEA�, Tokai. Powder samples �x=0.3, 0.6,
0.8, and 1.0� of about 20 g each were put into aluminum
cylinders. Neutrons with a wavelength of 2.358 Å were ob-
tained from the 002 reflection of pyrolytic graphite �PG�, and
a horizontal collimation of open-40�-sample-80�-80� in com-
bination with a PG filter was placed before the sample to
eliminate higher-order beam contamination.

III. RESULTS AND DISCUSSIONS

Shown in Fig. 2 are the magnetic susceptibilities � for all
the samples. � of �CuCl�LaTa2O7 �x=1� above 50 K was

fitted to the Curie-Weiss law, �=C / �T−��, where C and �
represent the Curie constant and the Weiss temperature. The
value of C of 0.410 emu K/�mol Cu� suggests the completion
of the designed ion-exchange reaction �Eq. �1��. The value of
� of −1.2 K is about 1/8 of what was obtained for x=0
�−9.6 K�.6 This does not simply mean much reduced mag-
netic interactions because the susceptibility has a broad
maximum at Tmax

� =11.5 K. This is a characteristic feature of
low-dimensional magnetic materials, indicating that a domi-
nant antiferromagnetic interaction is of same order of the
magnitude as in x=0. The observed Tmax

� does not differ so
much from that of x=0 �16.5 K�. However, unlike � for x
=0 having a sharp drop due to spin-singlet formation, � for
x=1.0 exhibits only a slight decrease below Tmax

� , followed
by a Curie tail, presumably due to paramagnetic impurities
and defects. Thus a magnetic ground state is expected for x
=1.0.

FIG. 1. �Color online� �a� Schematic view of the crystal struc-
ture of �CuCl�LaB2O7 �B=Nb, Ta�. �b� TEM image and ��c� and
�d�� the corresponding EDS maps of the x=0.8 sample, where blue
and red dots represent Nb and Ta, respectively.
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FIG. 2. �Color online� Magnetic susceptibilities of
�CuCl�La�Nb1−xTax�2O7 measured at H=2 T.
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This speculation is supported by the magnetization mea-
surements at 1.3 K �see Fig. 3�. While the magnetization
curve for x=0 remains zero until the field-induced magnetic
order occurs at Hc, apart from a tiny magnetization coming
from a small amount of impurities/defects,7,9 the magnetiza-
tion curve for x=1.0 has a sizable slope even in low fields.

In order to probe probable magnetic order, we performed
the neutron powder diffraction measurements at zero mag-
netic field as shown in Fig. 4�a�. We found a peak at around
18° corresponding to the �1

2 , 0, 1
2 � magnetic reflection.

Hence, it is natural to consider that �CuCl�LaTa2O7 exhibits
CAF order as in �CuBr�LaNb2O7.10 The ordered magnetic
moment was estimated to be 0.69�0.1�B, which is compa-
rable to that of �CuBr�LaNb2O7 �0.60�0.11�B�. However,
the T dependence of the intensity of this reflection �Fig. 4�d��
revealed that the transition temperature 7 K is much smaller
than that for �CuBr�LaNb2O7 �32 K�. The magnetization
curve for x=1.0 becomes very nonlinear compared with the
normalized one for �CuBr�LaNb2O7 �Fig. 3�, suggesting that
the effect of quantum fluctuations should be considerably
stronger in the former material.

We wish to recall here that the cell parameters of
�CuCl�LaTa2O7 and �CuCl�LaNb2O7 are almost the same.
Therefore, if the LaB2O7 perovksite slabs acted simply as
spacers that spatially and magnetically isolated the CuCl lay-
ers, the magnetic properties of the two compounds would be
identical. The present result indicates that superexchange in-
teractions through Cu-BO6-BO6-Cu �B=Nb, Ta� play an
important role as well as those through Cu-X-Cu in the mag-
netic properties. This is compatible with the observations
that the unpaired electron of Cu2+ ion occupies the d�3z2

−r2� orbital pointing parallel to the c axis9 and that the sta-
bility of the 1/3 magnetization plateau in �CuBr�A2B3O10
�A=Ca, Sr, Ba, and Pb� is tuned by substituting different
atoms in the B site.16 The cases in which d�3z2−r2� orbitals
align perpendicular to the magnetic layers is also found in
the S=1 /2 honeycomb antiferromagnet InCu2/3V1/3O3,
where superexchange interactions via InO6 are expected to
influence its magnetic properties.17

Once we confirmed that our two isostructural compounds
had different ground states �i.e., spin-singlet and CAF states�,
we were able to study the magnetic phase diagram in
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�CuCl�La�Nb1−xTax�2O7. Systematic evolution of the mag-
netic susceptibilities and the magnetization curves is shown
as a function of x in Figs. 2 and 3, respectively. For example,
the samples with higher x �from 0, 0.2, 0.4, 0.6, 0.8 to 1.0�
have lower Tmax

� �16.5, 15.4, 14.2, 13.2, 12.5, and 11.5 K,
respectively�. The value of �, derived from Curie-Weiss fit-
ting to the susceptibility data, also gradually decreases with x
��=−9.6, −5.6, −3.8, −3.1, −2.5, and −1.2 K�.

The M-H curves for x=0.2 and 0.4 trace that of x=0 in
the low-field region, suggesting the persistence of a spin-
singlet ground state. Persistent nature of the spin-singlet
ground state up to 40%-Ta substitution is in marked contrast
to the Cl-Br solid solution where the spin-singlet to CAF
ground state transition was induced by 5%-Br substitution at
most.11,12 When the magnetic field is further increased, we
found an anomaly at Hc=10.3, 9.1, and 8.0 T for x=0.0, 0.2,
and 0.4, respectively, suggestive of a field-induced phase
transition. Hc decreases with x. Above Hc, the magnetization
increases in proportion with H and arrives at the saturation
magnetization. For x	0.4, magnetization curves have finite
slope even from low-field region, as in the case of x=1.0.

The energy scan at Q=1.0 Å−1 for x=0.3 �Fig. 5�a��
shows a singlet-triplet excitation, the peak of which is cen-
tered at �ZF=2.0 meV. This gap energy is much bigger than
that expected from the high-field magnetization measure-

ments; though we have not performed magnetization mea-
surements for x=0.3, Hc should be between 8.0 T �x=0.4�
and 9.1 T �x=0.2� corresponding, to 0.9–1.0 meV assuming
g=2.0. No reason has yet been given for the source of the
discrepancy of the gap energy derived from neutron and
magnetization measurements but the fact that there is a sys-
tematic decrease in �ZF and Hc with x strongly suggests that
it is an intrinsic property. The triplet mode is nearly Q inde-
pendent, indicating the localized nature of the triplet excita-
tions as observed in x=0.6 As shown in Fig. 5�b�, the Q scan
result at E=2.0 meV for x=0.3 exhibits rapidly oscillating
behavior similar to x=0. The fit to the isolated dimer model6

yielded an unreasonably long intradimer distance of R
=9.5 Å, implying more complex and competing magnetic
interactions. Neutron powder diffraction measurements for
x=0.6 and x=0.8 �Figs. 4�b� and 4�c�� show a magnetic re-
flection corresponding to �1

2 , 0, 1
2 � indexed with respect to the

chemical unit cell. Hence they should have the same spin
structure as that of x=1.0. We also found that the ordered
temperature hardly changes �Figs. 4�e� and 4�f�� while the
ordered moment sizes decrease with decreasing
x :0.50�0.1�B �x=0.8� and 0.27�0.1�B �x=0.6�.

Uemura et al.12 recently performed �SR measurements of
�CuCl�La�Nb1−xTax�2O7 and proposed magnetic phase sepa-
ration between the static magnetic state and spin-singlet state
in the range of 0.4�x�1.0. This scenario requires that the
magnetization curves for x=0.6 and 0.8 are expressed by two
terms both in partial volume fractions: the spin-singlet phase
�exemplified by the magnetization curve for x=0.4� and the
CAF phase �x=1.0�,

M�x� = 
M�1.0� + �1 − 
�M�0.4� . �2�

In Eq. �2� 
 represents the volume fraction of the CAF phase
and �1−
� represents that of the spin-singlet one. As shown
in Fig. 3, the fitting curves reproduce the experimental data
quite well. The obtained value of 
 is 0.35 for x=0.6 and
0.78 for x=0.8 which is consistent with the �SR results
�0.37 for x=0.6 and 0.80 for x=0.8�.12 The decrease in in-
tensity of the magnetic Bragg peaks can be also interpreted
as a gradual decrease in the CAF partial volumes. Assuming
a constant ordered moment in the CAF phase, we estimate
the volume fraction 
=0.39�0.14 for x=0.6 and
0.72�0.15 for x=0.8, again consistent with the �SR
results12 and with the magnetization results presented above.

IV. CONCLUSIONS

We have demonstrated that a quantum phase transition
from spin-singlet state to antiferromagnetic order occurs in
�CuCl�La�Nb1−xTax�2O7, summarized in the magnetic phase
diagram in Fig. 6�b�. It is found that �CuCl�LaTa2O7 exhib-
its, despite the closeness of the lattice parameters in the solid
solution, CAF order at TN�7 K. This clearly shows that the
substitution of Ta5+ for Nb5+ in nonmagnetic slabs can affect
the ground state of this quasi-2D magnet. The spin-singlet
ground state in �CuCl�LaNb2O7 is fairly robust against Ta
substitution �0�x�0.4�, accompanied by a slight reduction
in the spin gap, which is in marked contrast to the drastic
collapse of the spin-singlet state in �CuCl0.95Br0.05�LaNb2O7.
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In the intermediate region �0.4�x�1.0�, we observed CAF
order but with a nearly constant TN, likely coexisting with
the spin-singlet state with systematic variation in the volume
fraction �Fig. 6�a��, in agreement with the recent �SR re-
sults. This is in stark contrast to the case of
�CuCl1−yBry�LaNb2O7, where TN increases gradually from 7
K �y=0.05� to 32 K �y=1.0�.
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